
Week 1

Python Data Structures

Outline

• Basic data structures

• Stacks

• Queques

• Desques

| 2

Basic data structures

• Linear structures

– Stacks, queues, desques, and lists

– Data collections where

• Items are ordered depending on how they are

added/removed

• Position relative to the other elements that came before

and after

– Two ends of linear structures

• Where to add and where to remove?

| 3

| 4

Stacks

Stacks

• Example:

| 5

Stacks

• A stack, or “push-down stack”, is an ordered

collection of items where the addition of new

items and the removal of existing items always

takes place at the same end.

| 6

Stacks

• Stacks are last-in first-out (LIFO)

| 7

Stacks

• Stack abstract data type:

– Stack() creates a new stack that is empty. It needs no

parameters and returns an empty stack.

– push(item) adds a new item to the top of the stack. It needs

the item and returns nothing.

– pop() removes the top item from the stack. It needs no

parameters and returns the item. The stack is modified.

| 8

Stacks

• Stack abstract data type (continued):

– peek() returns the top item from the stack but does not

remove it. It needs no parameters.The stack is not modified.

– is_empty() tests to see whether the stack is empty. It needs no

parameters and returns a boolean value.

– size() returns the number of items on the stack. It needs no

parameters and returns an integer.

| 9

| 10

Stack class

implementation

Stacks

• Stack operation examples:

| 11

Stacks

• Stack application

balanced vs. unbalanced

| 12

Stack application

| 13

| 14

Queue

Queues

• Example:

| 15

Queues

• A queue is an ordered collection of items where

the addition of new items happens at one end

(rear) and the removal of existing items occurs

at the other (front).

| 16

Queues

• Queues are first-in first-out (FIFO)

– First come first served

| 17

Queues

• Queue abstract data type:

– Queue() creates a new queue that is empty. It needs no

parameters and returns an empty queue.

– enqueue(item) adds a new item to the rear of the queue. It

needs the item and returns nothing.

– dequeue() removes the front item from the queue. It needs no

parameters and returns the item. The queue is modified.

– is_empty() tests to see whether the queue is empty. It needs

no parameters and returns a boolean value.

– size() returns the number of items in the queue. It needs no

parameters and returns an integer.

| 18

| 19

Queue class

implementation

Queue

• Queue operation examples:

| 20

Queues

• Queue application

| 21

Queue application

| 22

| 23

Deques

Deques

| 24

Deques

• A deque, or double-ended queue, is an ordered

collection of items similar to the queue:

– Two ends, front and rear

– Items can be added and removed from either front

and rear

• A deque has all capabilities of a stack and a

queue

| 25

Deques

• Deques are no longer restricted to LIFO and

FIFO

• Consistent use of addition and removal in the

context of application

| 26

Deques

• Deque abstract data type:

– Deque() creates a new deque that is empty. It needs no

parameters and returns an empty deque.

– add_front(item) adds a new item to the front of the deque. It

needs the item and returns nothing.

– add_rear(item) adds a new item to the rear of the deque. It

needs the item and returns nothing.

| 27

Deques

• Deque abstract data type:

– remove_front() removes the front item from the deque. It

needs no parameters and returns the item. The deque is

modified.

– remove_rear() removes the rear item from the deque. It needs

no parameters and returns the item. The deque is modified.

– is_empty() tests to see whether the deque is empty. It needs

no parameters and returns a boolean value.

– size() returns the number of items in the deque. It needs no

parameters and returns an integer.

| 28

| 29

Deque class

implementation

Deques

• Deque operation examples:

| 30

Deques

• Deque application

| 31

Deque application

| 32

References

• Chapter 1 Introduction, of Miller and Ranum (2013).

Problem Solving with Algorithms and Data Structures

using Python.

http://interactivepython.org/runestone/static/pythonds/i

ndex.html

• Chapter 3 Data Structures, of Miller and Ranum

(2013). Problem Solving with Algorithms and Data

Structures using Python.

http://interactivepython.org/runestone/static/pythonds/i

ndex.html

| 33

http://interactivepython.org/runestone/static/pythonds/index.html
http://interactivepython.org/runestone/static/pythonds/index.html

